
Fast Model Repository
as Memory for Web Applications

Sergejs KOZLOVIČS 1,2

Institute of Mathematics and Computer Science, University of Latvia

Abstract. We address the task of migrating standalone model-based ap-
plications to the web, where we face the need to synchronize models
between the client and the server. Because of synchronization overhead
and limited server memory that has to be shared among all connected
users, there is the risk that the model storage could become a bottle-
neck. We propose a model repository that uses an efficient encoding of
the model that resembles its Kolmogorov complexity and is suitable for
direct sending over the network (with almost no serialization overhead).
All traverse and query operations can also be implemented efficiently
by introducing just 3 automatic indexes. By utilizing the OS paging
mechanism, we are able to hold 10,000 and more repositories on a single
server.

Keywords. models, model repository, web applications

1. Introduction

Many existing applications have been developed using the model-driven approach.
However, usually, they are standalone applications. Since the web brings obvious
benefits such as instant availability and the ability to use them from different de-
vices and operating systems, developers consider the option to migrate their ex-
isting standalone applications to the web. In this paper we focus on model-based
applications. By model-based application we mean an application that stores data
in MOF3-like models and processes these data by corresponding model transfor-
mations [1,2]. We say “MOF-like” models, since in practice alternative implemen-
tations such as Java-based EMF/ECore are used [3,4]. By model transformations
we mean not only specific programs written in some model transformation lan-
guage (like MOLA, Lx, Epsilon, ATL, VIATRA, etc.), but also programs written
in traditional programming languages (like Java or C++) that are able to access
MOF-like models via some API (e.g., ECore API) [5,6,7,8,9].

1Corresponding Author: Sergejs Kozlovičs, Institute of Mathematics and Computer Science,
Raina blvd. 29, LV-1459, Riga, Latvia; E-mail: sergejs.kozlovics@lumii.lv.

2Supported by European Regional Development Fund within the project #1.1.1.2/16/I/001,
application #1.1.1.2/VIAA/1/16/214 “Model-Based Web Application Infrastructure with
Cloud Technology Support”.

3MOF (Meta-Object Facility) is a standard developed by OMG (Object Management Group)
for describing formal models [1].

Databases and Information Systems X
A. Lupeikiene et al. (Eds.)

© 2019 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-941-6-176

176

��������		��

��������� �������

����

���������

��

������

�����

���������
�����

���������
�����

�����

�����

Figure 1. An example of multiple mixed meta-levels (dashed lines represent the “instance-of”
relation). The relation “favourite breed” between Person and Breed as well as the link between
Peter and Collie cross two adjacent meta-levels.

In model-based applications models are usually saved in an in-memory storage
that we call model repository. Unlike databases, model repositories are simpler,
but more efficient. The model repository does not need to be able to perform
complex queries – that is the task of model transformations; the repository just
has to implement simple model traversal and update operations. In addition,
model repository internal structures and APIs are tailored for storing models.
Some can store models at multiple meta-levels (see Figure 1).

While migrating model-based applications to the web, there is the risk that
the model repository could become a bottleneck, since model transformations
use it intensively to implement business logic of model-based applications. Exist-
ing model repositories revealed two extremes: either a repository was memory-
efficient, but not CPU-efficient (like ECore), or vice-versa (like the “New Reposi-
tory” JR presented in 2010 [10]). Moreover, the internal encoding of model repos-
itories was usually concealed, thus, sending the whole repository content via the
network required to rely on the repository API, which was slower than if we
had access to internal data structures. Thus, there remained a need for a fast
repository that could be used in the web environment.

In this paper we propose a new model repository that is both CPU- and
memory-efficient. It is able to utilize the OS paging mechanism and synchronize
its content via the network with almost no serialization overhead.

Our idea is to use a specific encoding of models, which is introduced in the
next section. Section 3 reveals some interesting implementation details. In Sec-
tion 4 we provide quantitative test results that confirm the feasibility of our ap-
proach. In Section 5 we show how the proposed repository could serve as a mem-
ory analog for web applications. Finally, we discuss other potential use cases of
the proposed repository and conclude the paper (Sections 6–7).

2. The Main Idea

When deciding which API the upcoming model repository has to implement, we
aimed for an API that would be compatible with existing repositories. However,
we tried to avoid high-level APIs (like Epsilon Model Connectivity Layer or ATL

S. Kozlovičs / Fast Model Repository as Memory for Web Applications 177

Model Handler Abstraction Layer), since they are not efficient (e.g., linked objects
can only be set as a list, even when we need to include/exclude just one object),
they conceal internal data structures too much, and they are hard to use with
mixed meta-levels [7,8]. Instead, we focused on a low-level Repository Access API
(RAAPI)4. RAAPI can be viewed as repository assembler, thus, the sequence of
RAAPI calls can be treated as an assembly program for creating the content of
the repository from scratch. This resembles how a sequence of low-level Turing
machine operations results in the given string. We show below that the sequence
of RAAPI operations can be kept short enough, thus, it can be used as an efficient
encoding of a model (this resembles the Kolmogorov complexity concept with the
difference that the sequence of operations results in a model instead of a string).

An interesting feature of RAAPI is that it was developed with Šostaks’ con-
jecture in mind [11]:

It is difficult for a human to think at more than two meta-levels at a time.
Still, it is fairly easy for a human to focus on any two adjacent meta-levels.

To comply with this conjecture, RAAPI operations are defined for two adjacent
meta-levels (the model and the meta-model level). However, repository elements
(objects, classes, attributes, and associations) are identified by 64-bit references
(e.g., numbers or memory pointers) regardless of their meta-level. Thus, while
working with levels i and i + 1 we can obtain some element reference and then
use it when working with levels i+ 1 and i+ 2. We can even mix references from
different levels (e.g., linking the object “Peter” to the class “Collie” in Figure 1).

Certain RAAPI operations modify the state of the repository. We call them
modificating actions. Some of them are mentioned in Table 1, Column 1 (besides
create-actions there are also corresponding delete-actions, which are not men-
tioned). Other operations are read-only operations for querying/traversing the
repository (see Table 2, Column 1).

To encode the model we use a sequence of RAAPI modificating actions. Each
modificating action is assigned an integer code. Action code as well as other non-
string values (numbers, references, and booleans from action arguments as well
as the return value) are encoded as numbers stored as 64-bit IEEE doubles (see
Table 1, Columns 2 and 3). The two main reasons for such encoding are:

• IEEE double is the only type for numbers supported by JavaScript in most
browsers, thus, when using doubles, we can synchronize these numbers with
the browser directly, without the conversion;

• the whole sequence of actions can then be stored in a single actions array,
where each action occupies from 2 to 6 elements (thus, the actions array
is in fact an array of concatenated variable-length mini-arrays).

Some of the modificating actions take also strings as arguments. We can assume
that there is at most one string for each action (2 strings can be concatenated
into one by using a delimiter, e.g., ‘/’, see createAssociation in Table 1). All
such strings are stored in the strings array in the same order as string-containing-

4We proposed RAAPI in 2013 by combining the best from existing repository APIs. RAAPI
can be mapped to virtually any model repository. The actual version can be found at http:

//webappos.org/dev/raapi/.

S. Kozlovičs / Fast Model Repository as Memory for Web Applications178

Table 1. Some modificating RAAPI functions (actions) and their encodings.

Modificating action Code Encoding (action code+arguments)

Reference createClass(String name) 0x01 2 numbers (1 code + 1 class reference)
+ 1 string (name)

createGeneralization (

Reference rSubClass,

Reference rSuperClass)

0x11 3 numbers (1 code + 2 class
references)

Reference createObject(

Reference rClass)

0x02 3 numbers (1 code + 1 class reference
+ 1 object reference)

includeObjectInClass(Reference rObject,

Reference rClass)

0x12 3 numbers (1 code + 1 object
reference + 1 class reference)

Reference createAttribute(

Reference rClass,

String name,

Reference rPrimitiveType)

0x03 3 numbers (1 code + 1 class reference
+ 1 type reference) + 1 string (name)

setAttributeValue(Reference rObject,

Reference rAttribute, String value)

0x04 3 numbers (1 code + 1 object
reference + 1 attribute reference) + 1
string (value)

Reference createAssociation(

Reference rSourceClass,

Reference rTargetClass,

String sourceRole, String targetRole,

boolean isComposition)

0x05 6 numbers (1 code + 2 class references
+ 1 boolean as number + 2 references
for direct and inverse association ends)
+ 1 string
(sourceRole+‘/’+targetRole)

createLink(Reference rSourceObject,

Reference rTargetObject,

Reference rAssociationEnd)

0x06 4 numbers (1 code + 2 object
references + 1 association end
reference);
for bi-directional links only one
direction is stored (the opposite link
can be derived)

actions (string-actions) from the actions array, thus, we can infer which string is
associated with each actions just from the order of elements. When synchronizing,
all the strings from the strings array are concatenated by some other delimiter
and sent as one string.

An interesting fact is that our encoding stores only create-actions. When some
repository element is deleted, instead of adding a new delete-action, we just delete
the corresponding create-action from the actions arrays (and the corresponding
string from the strings array, if any). Thus, the length of the sequence always
corresponds to the size of the model.

Note. Of course, this is a simplified view on the encoding. In fact, appending
elements to and deleting them from an array is not trivial. Moreover, we
also need some indexing to be able to iterate throughout these arrays while
skipping unnecessary actions. As the next section shows, all these operations
can be efficiently implemented (and the memory increases just linearly).

The server-side repository works directly with the actions and strings arrays (us-
ing a few helper arrays for efficient iterating), thus, minimizing memory consump-
tion. The client-side repository (running in the browser) can convert the received
actions and strings arrays to less efficient, but more convenient encoding using
native JavaScript objects, since there is only one user at the client-side, controlling
all the browser resources.

S. Kozlovičs / Fast Model Repository as Memory for Web Applications 179

Table 2. A representative set of RAAPI operations for querying/traversing the repository.

Read-only operation Indices and keys Search criteria

findClass(String name) s2a(name) the first action with code 0x01 and
a2s(action) equal to name

findAttribute(Reference

rClass,

String name)

s2a(name) the first action with code 0x03 and
the first argument equal to rClass,
and a2s(action) equal to name or
recurse into superclasses (via
getIteratorForDirectSuperClasses) for
derived attributes

isDirectSubClass(Reference

rSubClass,

Reference rSuperClass)

r2a(rSubClass)
r2a(rSuperClass)

the first action with code 0x11 and
arguments rSubClass, rSuperClass

isDerivedClass(Reference

rSubClass,

Reference rSuperClass)

r2a(rSubClass)
r2a(rSuperClass)

the first action with code 0x11 and
arguments [rSubClass, rSuperClass]
or
recurse into subclasses of
rSuperClasses or superclasses of
rSubClass

linkExists(Reference

rSourceObject,

Reference rTargetObject,

Reference

rAssociationEnd)

r2a(rSourceObject)
r2a(rTargetObject)
r2a(rAssociationEnd)
or
r2a(rTargetObject)
r2a(rSourceObject)
r2a(inverse(
rAssociationEnd))

first, we use r2a(rSourceObject),
r2a(rTargetObject), and
r2a(rAssociationEnd) to look for the
first action with code 0x06 and
arguments [rSourceObject,
rTargetObject, rAssociationEnd];
if the action not found: we use
r2a(rAssociationEnd) to find the first
action with code 0x05 to obtain the
inverse association end; we use
r2a(rTargetObject),
r2a(rSourceObject),
r2a(inverse(rAssociationEnd)) to look
for the first action with code 0x06
and arguments [rTargetObject,
rSourceObject,
inverse(rAssociationEnd)];

getIteratorForDirect-

ClassObjects(Reference

rClass)

r2a(rClass) all actions with code 0x02 or 0x12
and the first argument equal to rClass

getIteratorForDirect-

SuperClasses(Reference

rSubClass)

r2a(rClass) all actions with code 0x11 and the
first argument equal to rSubClass

getIteratorForLinkedObjects

(Reference rObject,

Reference

rAssociationEnd)

r2a(rObject)
r2a(rAssociationEnd)
or
r2a(rObject)
r2a(inverse(
rAssociationEnd))

all actions with code 0x06 and
arguments 1 and 3 equal to [rObject,
rAssociationEnd] and
all actions with code 0x06 and
arguments 2 and 3 equal to [rObject,
inverse(rAssociationEnd)]
(we use r2a(rAssociationEnd) to find
the first action with code 0x05 to
obtain the inverse association end)

getIteratorForObjects-

ByAttributeValue

(Reference rAttribute,

String value)

s2a(value) all actions with code 0x04, the
second argument equal to Attribute,
and a2s(action) equal to value

S. Kozlovičs / Fast Model Repository as Memory for Web Applications180

3. Implementation

The actions and strings arrays are implemented as classical resizable arrays with
the amortized constant-time add and delete operations. Delete-actions are not
deleted right away (which could result in shifting the arrays) — they are marked
as deleted instead. When too many actions have been marked as deleted, or when
there is no space for storing a new create-action, one or both arrays are re-arranged
(this operation is rare compared to the cumulative number of add and delete
operations). The re-arrange operation compacts the given array by shifting the
elements and eliminating delete marks. Then the array length is multiplied by 0.5,
1, or 2 depending on the number of free elements in the end of the re-arranged
array.

Our experiments with RAAPI show that the length of the actions array is ap-
proximately 10 times the length of the strings array. We have chosen initial lengths
of 10,000 and 1,000. The arrays can grow independently up to 1,310,720,000 and
131,072,000, respectively, unless lower limits are specified5.

3.1. Additional Data Structures

To be able to traverse the model, we introduce 3 indexing data structures (in-
dices). The first 2 are:

• the action-to-string map a2s (one action can have at most one associated
string);

• the inverse string-to-action multimap s2a (the same string can be found in
multiple actions, e.g., different objects can have the same attribute value).

They allow us to implement read-only RAAPI operations that return strings (e.g.,
getClassName, getAttributeValue) or look up for a reference given a string (e.g.,
findClass, findAttribute, or getIteratorForObjectsByAttributeValue).

Each action is identified by a corresponding index in the actions array. Each
string is identified by an index in the strings array (however, string comparison is
performed not on indices, but on the actual string values from the strings array).

The third indexing structure is the reference-to-action multimap r2a (the
same reference, e.g., object reference, can be found within multiple actions). This
map allows us to traverse only actions where the given reference is used. We do
not need the inverse map, since, given an index in actions array, we can instantly
access the corresponding mini-array containing the action code along with all
references used as action arguments.

Notice that all 3 indices increase memory consumption just linearly (a2s and
s2a sizes are comparable to the length of the strings array; r2a size is comparable
to the actions length). However, when re-arranging actions and strings, we have
to rebuild the indices (but that still keeps the amortized time for add and delete
operations constant, since re-arrange is rare operation).

5The first number is the maximum length of actions that does not cause integer overflow
(231 − 1), which allows us to use 4-byte integers to encode positions in the actions array. The
actions array then can occupy up to 10GB (not counting strings), which we consider quite liberal
for a single model accessed by a single user via a web application.

S. Kozlovičs / Fast Model Repository as Memory for Web Applications 181

Having just these 3 maps/multimaps we can implement efficiently all read-
only RAAPI operations as well as certain auxiliary internal operations such as
cascade delete. The following subsections provide more detail.

3.2. Querying/Iteration

Table 2 mentions a representative subset of read-only RAAPI operations and
reveals which indices and keys are used to implement them. Each key is used
to obtain a list of actions from some index (r2a or s2a). Then these actions are
checked against the conditions mentioned in Column 3 (sometimes a2s is used
there to check equality of strings).

As Column 2 shows, sometimes we have to look at multiple lists of actions at
the same time. For some RAAPI operations (e.g., isDirectSubClass) we just need
to get the first action that belongs to all the given lists and meets the criteria,
while for other (e.g., getIteratorForLinkedObjects) we have to iterate through all
such actions.

Good news is that all lists of actions turn out to be sorted, since each time
a new action is added, it is appended to the end of the actions array (perhaps,
after re-arrange), where the index of the new action is greater than the index of
all previous actions. Then this action and its arguments are added to the cor-
responding indices r2a, a2s, and s2a. Thus, we can use the “merge” approach
when traversing actions that must belong to multiple lists (see the listing be-
low). To make the search within multiple lists more efficient, we implemented the
nextGreaterOrEqual operation via binary search.

f i n d F i r s t A c t i o nW i t h i n (l i s t s) {
// i n i t i a l i z i n g i t e r a t o r s and g e t t i n g f i r s t e l ement s o f
// the l i s t s (i t e r a t o r s r e t u r n INFINITY , i f t h e r e a r e no
// more e l ement s)
f o r (i =0; i< l i s t s . l e n g t h ; i++) {
i t e r a t o r s [i] = l i s t s [i] . i t e r a t o r () ;
v a l u e s [i] = i t e r a t o r s [i] . f i r s t () ; // INFINITY , i f empty

}
m = max(v a l u e s) ;
wh i l e (m<INFINITY and not a l l v a l u e s equa l m) {

// moving fo rwa rd a l l i t e r a t o r s u n t i l each o f them
// p o i n t s to an e l ement >=m or to the end o f the l i s t
f o r (i =0; i< l i s t s . l e n g t h ; i++)

v a l u e s [i] = i t e r a t o r s [i] . n ex tG r ea t e rOrEqua l (m) ;
m = max(v a l u e s) ;

}
r e t u r n m; // INFINITY , i f a t l e a s t one l i s t ended

}

The indices are used not only for queries/iterations, but also in modificating
actions for validating the arguments. For example, in setAttributeValue we have
to check that the given object exists and the given attribute reference is legitime,
i.e., the object belongs to a class that has that attribute defined. In addition, we
have to find and delete the previous attribute value, if any.

S. Kozlovičs / Fast Model Repository as Memory for Web Applications182

3.3. Cascade Delete

When a delete-operation is called, we find the corresponding create-operation
in the actions array and mark it as deleted (for string actions we also mark
strings [a2s(action)] as deleted). However, in certain cases cascade delete is re-
quired. For example, when deleting a class, all its objects have to be deleted as
well. Thus, not only the createClass action (0x01) has to be marked as deleted,
but also all subsequent createObject operations (0x02) having the same class ref-
erence as the first argument. Class objects can be found by traversing the list
r2a(class reference). When deleting an object, all corresponding attribute values
(0x04) and links (0x06) have also to be marked (this can be done by traversing
r2a(object reference)). All marked actions will be cleaned up during re-arrange.

3.4. Memory-Mapped Files

To avoid out-of-memory exceptions when too many model repositories are open,
we rely on memory-mapped files — a mechanism available in the majority of op-
erating systems. The OS automatically swaps memory pages, while the program-
mer can access the data via a single pointer as if the data were always loaded
into memory. With memory-mapped files, server memory is not limited to the
size of the physical RAM, and the OS does all the low-level job automatically
and efficiently (for instance, files are loaded into memory in lazy manner, thus
attaching a file as a pointer is fast). The shortcoming is that memory-mapped
files, in essence, are arrays. While the actions array can be mapped directly to
a file, other data structures (indices and strings) have to be mapped to arrays
manually.

To be able to store strings in a memory-mapped file, we use 2 arrays: chars
and strings2. The first one is for appending characters of each new string (we use
UTF-8 character encoding); the second one stores the start index in the chars
array and the string length (in bytes). The re-arrange functions works only on
the relative short strings2 array, thus, characters are not moved6.

The r2a, a2s, and s2a indices are implemented as arrays of keys and values.
The lengths of these arrays are prime numbers that depend on the lengths of
the actions and strings2 arrays. Prime lengths allow us to use these arrays as
hash tables with open addressing and double hashing 7 [12]. Since r2a and s2a
are multimaps, we modify traditional hashing approach: for multi-valued keys we
store a negative number −(k+1) in a hash table, where k is the number of values
already stored for this key (including the collisions). Thus, to append a new value
for the given key, we first skip (k + 1) elements and try to append the value as
usual. Our experiments show that the number of collisions for such multimaps is

6The chars arrays still can be compacted occasionally, e.g., during save.
7The first hash is modulo p, the second is modulo (p− 2) + 1, which is always co-prime with

p. For strings we use Java built-in hashCode function. However, since it returns 0 on empty
strings, and since the second hash calculates to 1, all empty strings would be stored in the
beginning of the hash table, thus, drastically increasing the number of collisions (up to 2.85x in
our experiments). We avoid such inefficient hash values by appending a constant dummy text
to every string before calculating its hash.

S. Kozlovičs / Fast Model Repository as Memory for Web Applications 183

2.28 in average (when working on a repository containing data from a real use
case).

While deleting elements from hash tables is usually not trivial, our approach
is simple: we just mark elements as deleted when the corresponding actions are
marked as deleted. During re-arrange, hash tables are rebuilt from scratch. How-
ever, this approach introduces a new issue: when traversing the values of a mul-
timap, we can encounter such marked-as-deleted elements. If we need to iterate
through all elements, we can just ignore these marked elements. However, the
function nextGreaterOrEqual mentioned above won’t work any more, since the
sorted list of values now can contain deleted (marked) values, and the binary
search algorithm won’t work as expected. Generally speaking, the binary search
has to be replaced with linear search8. However, since the number of marked
elements is small (otherwise, the array is re-arranged), we introduce the follow-
ing modification of the binary search operation: when we encounter a marked-as-
deleted element that should become a new middle element, we look for the next
non-marked element linearly. Then the search continues as ordinary binary search.
This modification proved to be very fast in practice (it boosted model transforma-
tions by 60.56% compared to fully linear implementation of nextGreaterOrEqual).

3.5. Synchronization and Avoiding Collisions

To synchronize the repository efficiently between the client and the server we use
web sockets, a standardized protocol with low overhead for transmitting both
binary and string data. Thus, the actions and strings can be synchronized effi-
ciently. The client and the server can modify the repository independently, each
on its side (we use the term repository client to denote each side). Later, they
synchronize changes. To optimize the synchronization process, we collect several
modifications within a small time interval and then send them in bulk. Changes
are sent asynchronously, thus, the main process continues without any noticeable
delay. Modifications are sent using the encoding of the actions and strings ar-
rays with an exception that modifications can contain also delete-actions. When
received, modifications are re-executed on the receiving side as if they occurred
right there. However, if no precautions are taken, there is the risk of collisions.
Below we list possible types of collisions and provide their resolving mechanisms.

3.5.1. Reference Collisions

When the server and the client create new elements (objects, classes, associations,
etc.), they could reserve the same reference for different entities. To avoid this
type of collision, we split the set of references into even and odd: the server-
side repository client assigns even references for new objects, while browser-side
JavaScript repository client assigns odd. Thus, both repository clients will have a
predefined last bit for new references. We can generalize this approach to support
more than 2 repository clients: each repository client (the server, the browser, the
debugger, etc.) has the number of predefined lower bits and their values.

8Grover’s algorithm on a real quantum computer could take sub-linear time, but the proposed
repository is intended for classical computers.

S. Kozlovičs / Fast Model Repository as Memory for Web Applications184

Assume that we reserve 10 lower bits to support up to 1024 repository clients.
We can approximate the number of new references each repository client reserves
each second by 1000. Taking into a consideration that IEEE double has 52 bits
of mantissa that can be used to store integer references, we come up with more
than 136 years of repository usage without re-mapping references.

If the number of repository clients is not known in advance, but is quite small
(up to 10), instead of reserving 10 lower bits, we can start with just 1 reserved
bit for the client and the server. Then we can take the server-side repository and
split its even references into two groups: ending with 002 and 102 (the client-side
repository will continue to use odd references). However, in this case the reference
sets are not equally distributed between all repository clients. Moreover, if the
same repository client is constantly being split, its reference set will decrease
exponentially with each new client.

3.5.2. Attribute Collisions

The server and the browser can alter object attribute values independently be-
fore they synchronize their changes. We must ensure that all repository clients
converge to the same repository state after synchronization. However, we do not
address the problem of synchronizing server and client threads,— it is the respon-
sibility of the developer.9

Assume we have some object attribute with value v0 (v0 could be null, if no
assignments were made yet, or if the value had been deleted). Now both reposi-
tory clients set new attribute values: the server assigns v1 and the browser assigns
v2 (we can assume v1 �= v0 and v2 �= v0; otherwise we can skip the idempotent
assignment). After synchronization, the server gets value v2, and the browser gets
value v1, resulting in inconsistency if v1 �= v2. To avoid that, we synchronize the
old value v0 along with the new value (thus, the server sends both v1 and v0,
and the browser sends both v2 and v0). Now, before the assignment, each client
compares its current value against the received old value v0. If the current value
equals v0, then the assignment is made as usual. If the current value differs, then
we assign the value min(current value, received synchronized value). In our exam-
ple, the server assigns min(v1,v2) and the browser assigns min(v2,v1), resulting in
the same repository state.

3.5.3. Link Collisions

When dealing with inconsistent createLink and deleteLink operations, we can
treat links as Boolean attribute values depending on whether the link exists. Thus,
the same technique from Section 3.5.2 applies.

4. Feasibility

In this section we provide details on CPU and memory benchmarks. We also give
some notes on synchronization overhead.

9Similarly, when two processes on the same machine modify a common variable simultane-
ously, they end up with the same memory state. However, the developer is responsible for further
process behavior that might depend on the value of that shared variable.

S. Kozlovičs / Fast Model Repository as Memory for Web Applications 185

Table 3. CPU benchmark (all values are in milliseconds per repository)

ECore JR AR (Java
hash
maps)

AR (hash
tables)

AR
(memory-
mapped
files)

Repository time 1016 857 423 618 760

Overhead time 20,015* 436 106 93 85

Processor Intel i7-2600, 3.40 GHz, repository running within a single thread, 64-bit Java
Virtual Machine 1.8.0 on Windows, no heavyweight parallel processes running.

Profiler: Java VisualVM 1.8.0 in CPU profiling mode.
Repository time accuracy w.r.t. the mean value is 10%, overhead time accuracy is 25%.

*Due to ECore internal design, implementation of some RAAPI operations required significant
overhead in order to avoid ECore exceptions.

4.1. CPU Benchmark Tests

Table 3 provides averaged CPU benchmark data for the proposed repository AR
(acronym for “Actions Repository”) in comparison with Ecore and JR [3,10]. AR
and ECore are implemented in Java, while JR — in plain C (until now, JR proved
to be the fastest repository we ever used in our model-based tools). In our tests we
were interested in 3 variations of AR: using Java standard data structures (Java
arrays, HashMaps, and ArrayLists), using hash tables implemented manually via
in-memory arrays, and using hash tables stored in a memory-mapped file. In all
cases we used a transformation borrowed from the ontology editor OWLGrEd
(http://owlgred.lumii.lv). The transformation we chose performs a set of ac-
tions (such as creating a dialog window from a model, storing the input in the
repository, and refreshing the diagram from the updated model) that represent a
real usage step of a graphical model-based tool. We measured not only CPU clock
for each of the repositories, but also the overhead added by wrappers, which map
universal RAAPI to native repository APIs (operations not provided by native
APIs were implemented in wrappers). We can infer from Table 3 that AR outper-
forms both ECore and JR. Logically, memory-mapped files are a bit slower than
direct in-memory hash tables. Java built-in data structures show the best CPU
benchmark rates (but not the best memory rates, as is shown below).

4.2. Memory Benchmark Tests

Table 4 provides averaged memory benchmark for the repository, on which the
transformation mentioned above was executed. We measured not only memory
consumption, but also repository load time. For memory-mapped files we split
our tests into 2 groups: tests from the first group were executed, when there
were no memory-mapped files on disk (thus, they had to be created by the OS
and filled with data by AR); tests from the second group just opened existing
memory-mapped files. As Table 4 shows, AR with memory mapped files was the
only repository that could handle 10,000 models at the same time with significant
room for scaling (and the OS reserved just 54MiB of RAM for all of them, if we
do not count the files on disk amounting to 122 GiB in total). We have to admit
that our tests did not include heavyweight parallel processes or intensive usage

S. Kozlovičs / Fast Model Repository as Memory for Web Applications186

Table 4. Repository memory usage (MiB/repository) and open time (ms/repository)

Number
of

reposi-
tories

JR ECore AR
(Java
hash
maps)

AR
(hash
tables)

AR
(creating
memory-
mapped
files);

12.2MiB on
disk per
repository

AR
(opening
memory-
mapped
files);

12.2MiB on
disk per
repository

100
memory 33.41�� 12.77 13.98 11.25 1.67 0.013

time 1047�� 849 153 63 61 (SSD)
or 69
(HDD)

26 (SSD)
or

9 (HDD)

1,000
memory

n/a
9.45♦
or

9.57♦♦

13.74*

or
13.55**

10.72� 0.071 0.013

time 4763♦
or

5414♦♦

189*

or
714**

83� 68 (SSD)
or 148
(HDD);

420
(LAN)�

27 (SSD)
or 33

(HDD);

280
(LAN)�

10,000
memory

n/a n/a n/a n/a
0.012 0.005

time 226 (HDD) 41 (HDD)

Profiler: Java VisualVM 1.8.0 in CPU and memory profiling modes.

�� One JR instance; it is impossible to open multiple JR instances in the same process.
♦ 173 repositories before out of memory; automatic garbage collection
♦♦ 180 repositories before out of memory; forced garbage collection
* ≈111 repositories before freeze; automatic garbage collection
** 101 repository before out of memory; forced garbage collection
� ≈142 repositories before out of memory; automatic garbage collection
� Windows share (samba) over a 100 Mbit/s local area network

of memory by multiple users with inevitable competition for processor cache.
Nevertheless, current results look promising.

5. Repository as Web Memory

Having the proposed model repository, both the web server and web browser can
use it as shared “web memory”, which is kept in sync automatically and trans-
parently. This resembles classical multi-processor systems, where the common
memory is shared between multiple processor cores, see Figure 2.

Nevertheless, “web memory” differs from classical RAM in the following
points:

• Classical RAM, in essence, is an array; “web memory”, in its turn, is a
model, which is a graph-like structure.

• In classical RAM, it is impossible to create hooks for memory assignments.
In “web memory”, the corresponding repository API function can be over-
ridden, thus, making it possible to track changes for further synchroniza-
tion.

S. Kozlovičs / Fast Model Repository as Memory for Web Applications 187

�
������ ��	�
�

����
����

��� �	�
��	�

���

�������	
���

������������
�� �

����

��
�������

Figure 2. “Web memory”: common memory shared between the server and the client.

Figure 3. Bridges are responsible for synchronizing “web memory” and for providing access to
memory from server-side and client-side code.

We can go even further by providing an indirection layer that factors out not only
memory synchronization, but also access to server-side and client-side code, thus,
making the illusion that web applications are being written for a single computer,
without the need to think about network-specific aspects. We are working on
implementing this approach in our infrastructure for web applications webAppOS
(http://webappos.org). Figure 3 depicts a part of webAppOS architecture that
resembles a typical chipset layout within the motherboard of a personal computer.
The main repository content is created at the server side (each repository occupies
one “MRAM10 slot”). Each server-side repository is mapped to the OS virtual
memory space by means of memory-mapped files. Thus, server-side code can

10Model Repository as Memory. The acronym was deliberately chosen to resemble RAM
(Random Access Memory).

S. Kozlovičs / Fast Model Repository as Memory for Web Applications188

be distributed between processes, where each of them can access MRAM slots
directly by addressing the same memory-mapped files. We call such direct access
to repositories Memory Bus (this resembles how a northbridge accesses memory
slots in a PC).

There is also Web Socket Bus for synchronizing the model over the network
by means of web sockets. We call web socket end points the Server-side bridge and
Client-side bridge (analogs of northbridge and southbridge on the motherboard).
On certain model changes, the bridges will trigger execution of server-side code,
client-side code, or even access to client-side devices (such as printers).

6. Discussion

Currently, AR iterators over repository elements are not thread-safe internally.
We deal with this issue by synchronizing public RAAPI calls and copying the
required elements each time an iterator is returned via RAAPI. In the future, to
boost iterators, we could switch to the copy-on-write pattern (where copying is
done only if a parallel modification has been performed).

Since all elements (classes, associations, etc.) in AR are identified by 64-bit
references, we can create classes and objects at different meta-levels and even
mix them. Thus, AR can be used for storing models corresponding to virtually
any meta-modelling standard (e.g., MOF, EMOF, or SMOF) or ontology lan-
guage (e.g., OWL or OWL2) [1,13,14,15]. This can lead to interesting use cases.
For instance, we can create meta-meta-level classes corresponding to the OWL2
standard (OWL:Class, OWL:Property, etc.). Then we can create ordinary meta-
model classes and call includeObjectInClass to make them instances of the meta-
meta-level classes (e.g., class Person would become an instance of OWL:Class).
All these operations are legitime and are just added to the actions array. Then,
by using AR indices, we can infer which classes are instances of OWL2 meta-
metamodel, and forward them to a semantic reasoner.

AR can also be used in a NoSQL-manner, where the metamodel is not defined
in advance. This can be implemented in 2 ways:

• by skipping metamodel checks (i.e., not validating action arguments);
• by introducing a wrapper. When some action requiring a metamodel el-
ement is performed, the wrapper creates a missing metamodel element
on-the-fly. This, however, requires advanced techniques for guessing meta-
model elements (e.g., guessing types of attributes or inheritance relations)
and, perhaps, modifying them dynamically, if eventually we find that the
initial guess was incorrect.

Our tests showed that AR is more efficient than JR. The JR authors showed that
their repository outperforms popular OpenLink Virtuoso. Pacaci et al. showed
that Virtuoso outperforms other graph databases, and Hellerstein et al. showed
that graph databases outperform relational ones [16,17]. While these facts may
seem to be in favor to the proposed repository, we have to admit that the perfor-
mance depends on a particular usage scenario. For instance, Pacaci et al. showed
that traditional relational Postgres database outperformed Virtuoso in several
specific tests [16].

S. Kozlovičs / Fast Model Repository as Memory for Web Applications 189

It is hard to compare AR to linked data and their query mechanisms (like
Linked Data Fragments, linkeddatafragments.org), since they are optimized for
single-query usage (where each query can be quite complex), while AR is designed
to serve multiple, but simple queries performed by model transformations.

7. Conclusion

We presented a model repository that outperforms existing repositories regarding
both CPU and memory. The main idea was to use an efficient encoding of the
model by storing a list of actions (and corresponding strings) that create the
content of the repository (which resembles the Kolmogorov complexity concept).
We added just 3 indexing arrays for implementing RAAPI query and iteration
operations. The proposed encoding, combined with memory-mapped files, can
hold 10,000 repositories (and even more) on a single server. That resembles the
C10K problem (10,000 concurrent connections; that is considered a reasonable
target for web-based applications11) [18]. However, stress tests concerning CPU
cache and context switches still have to be performed.

The proposed repository encoding is used “as is”, when synchronizing the
repository via the network (the encoding even uses the IEEE double as the only
JavaScript-compatible type for numbers). Since we use asynchronous web sockets,
synchronization overhead is negligible (unless the network becomes a bottleneck).

The repository implements universal RAAPI, where the developer thinks at
two adjacent meta-levels (the model and the meta-model level), but can use any
number of meta-level and even mix them.

We hope the repository will find wide adoption, thus, we release it under
an open-source license12. The repository is written in Java, but a dynamic-link
library for accessing it from native code is available (32-bit and 64-bit versions
for Windows, Linux, and MacOS platforms).

We are working on developing a model-based infrastructure for web applica-
tions (webAppOS), where the proposed repository will be a central component
implementing memory abstraction. A webAppOS-based version of our graphical
ontology editor OWLGrEd is coming soon. OWLGrEd diagrams will be stored us-
ing AR, making the proposed repository a part of the new OWLGrEd file format
for both desktop and web-based versions of OWLGrEd.

Acknowledgments

The work has been supported by European Regional Development Fund within
the project #1.1.1.2/16/I/001, application #1.1.1.2/VIAA/1/16/214 “Model-
Based Web Application Infrastructure with Cloud Technology Support”.

11For more connections or during peek loads, one can borrow virtual cloud servers, e.g., from
Amazon Elastic Cloud.

12The repository can be downloaded at http://webappos.org/dev/ar.

S. Kozlovičs / Fast Model Repository as Memory for Web Applications190

References

[1] Object Management Group,OMG Meta Object Facility (MOF) Core Specification Version
2.4.1, Object Management Group Std. formal/2011-08-07, 2011.

[2] Object Management Group, Meta Object Facility (MOF) 2.0 Query/View/Transfor-
mation Specification, Version 1.3, formal/16-06-03, Object Management Group Std.
formal/2011-01-01, 2016.

[3] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse Modeling Frame-
work, 2nd Edition, E. Gamma, L. Nackman, and J. Wiegand, Eds. Addison-Wesley,
2008.

[4] Eclipse Modeling Framework (EMF, Eclipse Modeling subproject). http://www.eclipse.
org/emf.

[5] A. Kalnins, J. Barzdins, and E. Celms, “Model transformation language MOLA,” in Model
Driven Architecture, Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2005, vol. 3599, pp. 62–76.

[6] J. Barzdins, A. Kalnins, E. Rencis, and S. Rikacovs, “Model transformation languages and
their implementation by bootstrapping method,” in Pillars of computer science, A. Avron,
N. Dershowitz, and A. Rabinovich, Eds. Berlin, Heidelberg: Springer-Verlag, 2008, pp.
130–145.

[7] D. Kolovos, L. Rose, and R. Paige, “The Epsilon Book,” http://www.eclipse.org/epsilon/
doc/book/.

[8] F. Jouault and I. Kurtev, “Transforming models with ATL,” in Proceedings of the 2005
international conference on Satellite Events at the MoDELS, MoDELS’05. Berlin, Hei-
delberg: Springer-Verlag, 2006, pp. 128–138.

[9] D. Varró and A. Balogh, “The model transformation language of the VIATRA2 frame-
work,” Sci. Comput. Program., vol. 68, no. 3, pp. 187–207, Oct. 2007.

[10] M. Opmanis and K. Čerāns, “Multilevel data repository for ontological and meta-
modeling,” in Databases and Information Systems VI - Selected Papers from the Ninth
International Baltic Conference, DB&IS 2010, 2011.

[11] S. Kozlovics, “The orchestra of multiple model repositories,” in SOFSEM 2013: The-
ory and Practice of Computer Science, Lecture Notes in Computer Science, vol. 7741.
Springer Berlin Heidelberg, 2013, pp. 503–514.

[12] D. E. Knuth, The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting and
Searching. Redwood City, CA, USA: Addison Wesley Longman Publishing Co., Inc.,
1998.

[13] Object Management Group, MOF Support For Semantic Structures (SMOF), Object
Management Group Std. ptc/2012-08-18, 2012, http://www.omg.org/spec/SMOF/.

[14] W3C, OWL Web Ontology Language Reference, http://www.w3.org/TR/owl-ref/, W3C
Recommendation, 10 February 2004.

[15] W3C, OWL 2 Web Ontology Language Document Overview (Second Edition), http://
www.w3.org/TR/owl2-overview/, W3C Recommendation, 11 December 2012.

[16] A. Pacaci, A. Zhou, J. Lin, and M. T. Özsu, “Do we need specialized graph databases?:
Benchmarking real-time social networking applications,” in Proceedings of the Fifth In-
ternational Workshop on Graph Data-management Experiences & Systems, GRADES’17.
New York, NY, USA: ACM, 2017, pp. 12:1–12:7.

[17] J. H. et al., “Ground: A data context service,” Proceedings of CIDR 2017.
[18] D. Kegel, “The C10K problem,” http://www.kegel.com/c10k.html.

S. Kozlovičs / Fast Model Repository as Memory for Web Applications 191

