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Abstract. We propose an optimization-based technique for uayoperations ensuring
flexible and convenient interactive editing of adeiclass of graph-like diagrams. Diagrams
may contain nested nodes, textual labels on comnegiaths, and branched structures of
paths. Layout operations rely on mental map présgroptimum layout adjustment via
solving quadratic programming problems subjectrigbening constraints.

Introduction

Graph-like diagrams are graph based pictorial medleat indicate the interrelationships of elemeaits
various structures. Graph-like diagrams are widedgd to describe the information and its structareuch
areas as CASE or CAD, for example describing thermxtions between enterprises, development of
specifications, or for program code representafidm88, BRJ99].

An important aspect for users is diagram visual@at a process callediagram layout Layout
technique of graph-like diagrams has been develolpaad in hand with pure graph layout [BNT86,
RDMMST87, SM81, TDBT88], gradually refining requimeents for diagram layouts [DM90, PSTS91].
However, as emphasized in [LE95], pure graph laymuthe whole has received more attention [DETT94,
DETT99] than diagram layout. In fact, additionalguerements for layout of diagrams cause specific
problems that could be far from principal questiaigure graph layout. Striking examples are trike-|
structures with edge drawing conventions such aslwoation of several edges into branched fork-like
paths, or representation of an edge by geometingdilision of node symbols [LE95] (see also [MM88,
SM91]). Of course, when it is too tedious to maintapecific requirements, we could ignore them. For
example, in [S97], a well-known graph drawing alffom is used for UML class diagrams [BRJ99],
however the inherent UML fork tradition, which has generally adopted realization in pure graph latyo
is simply rejected.

Our graph-like diagrams are combinatorial strucsucensisting of elements of three principal kinds:
nodes, relations among nodes, and labels. A lagbatdiagram is an arrangement of geometrical aisjec
on the plane corresponding to the diagram elem@i¢sl).

Figure 1. Simple diagram (a), diagram with forks (b), diagr with nested nodes (c).



Nodes are basically represented by two-dimensiggaibols, most commonly by upright rectangular
boxes or circles. In this paper we will use onlgtangular boxes.

Relations are represented by
(1) paths i.e. single rectilinear polylines connecting syotbthat represent the associated nodes (Fig. 1a),
(2) forks, i.e. branched structures of rectilinear polylifEéfy. 1b),
(3)inclusionsi.e. placement of one node symbol inside anotirer (Fig. 1¢).

Labels are text fields, represented by upright aagles and are
categorized into node labels and path labels. Niadbels are placed
inside the nodes on the specially assigned margiath labels must be
placed near their lines in an understandable waicwkabel belongs
to which line.

Since we allow a wide range of geometrical représtons of
relations, our layouts cover the full spectrum framawings of simple
graphs (Fig. 1a) up to UML diagrams [BRJ99, SBKP$Big. 1b), System l 1
including essentially generalized K.Sugiyama's amdMisue's D°°”Tje”;ae e
compound graphs [SM91] (Fig. 1c). Figure 2 showat thil together. " Toambesenthy | M il

_ The tqsk for dlagram Iayout is to represent theomiatl(_)n of =
diagrams in an easily perceptible way [DM90, PSTE®&tcordingly, =
a correct layout must satisfy natural geometric stoaints:
(C1) node rectangles are not smaller than a mininsiz®,
(C2) path lines have no common segments,

(C3) the minimum distancé > 0 is guaranteed between nonintersecting segnumgsometrical objects,
(C4) path labels neither overlap each other, natenocontours, nor path lines,

(C5) node contours do not cross each other,

(C6) path lines do not intersect node contours sferced by inclusions.

We allow variable size node rectangles in ordeb&able to draw graphs of degree higher than four
[DETT99, MHT93]. Also editing node labels or puttjone node inside another one could cause to change
node sizes. Similarly, inserting new nodes or plattels between the paths contacting the same nade m
require changing its size.

A layout of a diagram can be created interactivieyythe user, or automatically by a program. The
interactive drawing approach [DETT99] has led te tea of anental magBT98, DETT99, MELS95].

The mental map of a diagram should be preservedhduhe layout process in order to ensure the sser’
control and understanding. Thereby all changes hte tiagram have always to be minimized, so
optimization approach rises in a natural way alovith the notion of mental map.

The concept of a mental map together with optim@atuestions is profoundly studied in literatuhe.
[MELS95], the problem of preservation of the mentaap is discussed. The authors propose several
models to make the concept of the mental map moeeipe: orthogonal ordering, proximity relationagda
topology. Additionally an algorithm for rearrangiagdiagram to avoid node overlap preserving orthwao
ordering is presented. [HIMF98] develops this aparie further to avoid intersections among rectandfes
[BT98] a formalization of the notion of mental mdp performed, and differences between layouts in
various aspects: distance, proximity, orthogonaddesing, shape, and topology are expressed
mathematically. The authors of [HM97] use mathewstiprogramming including quadratic one to
preserve the mental map in an interactive layouewhepeated modifying occurs. Constraints express
semantic information, mainly about various aestigethat have to be considered automatically.

Our approach to the drawing of graph-like diagragnsws from the tool GRADE [KR96], and is now
being developed further for Editor Factory need8K»98]. Editor Factory is an annotation language
interpreter, which can be used to design variowesycim editors. Editor Factory is based on Graphical
Diagramming Engine [G], which provides the graphitanctionality of the editor and its user interiac
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Figure 2. Complex diagram.



Editors must be able to manage diagrams interalgtizexd to generate the layout automatically. An
editor based on our Graphical Diagramming Enginevjdes fully automatic layout and direct manual
painting of graphical primitives as extreme casssll as intermediate editing levels all integichte a
single system. Fast procedures for switching amtbiegvarious layout modes have also been implemented
thus ensuring flexible and convenient editing Hiniy the gap between the extreme levels of editige
have to deal with large diagrams consisting of gt or even thousands nodes and relations irtireal
Therefore the diagram operations must be desigoethbiximum speed.

To create a layout of a diagram we go through salveglatively independent stages. The main of them
are node layout, path routing, layout compactiang éabel assignment. At each stage we provide aecbr
intermediate layout trying to preserve a common tabmap. To guarantee maintaining the mental map
during layout modification we solve two quadratiptomization problems, one in each orthogonal di@act

This approach conforms to several important ideappsed in the literature. First, layout adjustment
requires the objects to move or to stretch as irH[M3]. Furthermore, an optimum adjustment involves
mathematical programming including integer, lineand quadratic ones that are widely used in graph
drawing [HM97, DETT99]. Recent works [BDPP99, KM9&so elaborate related concepts and touch ours
in some basic points.

The deviation of the layout from the intended méntaap can be measured by a function to be
minimized. Our function comes from the idea of diste metrics [BT98] and position constraints
[DETT99]. Minimization is done subject tordering constraintsin [DETT99] it is shown how ordering
constraints can be used in layered drawings forizomtal coordinate assignment. However when
discussing the use of a quadratic programming apgnp the authors warn that the solution requires
considerable computational resources even if thdeong constraints form an acyclic graph. Such
constraints also appear in [GKNV93] for finding apum layering by integer programming. Below we
show that our technique, which is based on thegutije gradient method [M89], allows us to solvesk
problems spending quite moderate computationalness.

As another example, we have a possibility to eliatenthe intersections among upright rectanglesewhil
preserving the orthogonal ordering. For this pu@@IELS95, HIMF98] offer anO(n%)-time heuristic
algorithm that minimizes the layout area. Our aaro gives similar results but in a conceptuallyieas
way. Further, our operations include also othetaagle processing algorithms for rectangle comarcti
and packing.

A quadratic programming algorithm is the principadrt of a procedure calletlormalize which
ensures a correct intermediate layout while notrdgsg the common mental map at each layout coeati
stage Normalizeis our backbone operation and is discussed betomare detail.

Layout structure and normalization

When modifying the diagram, the user is insertingmnodes or paths, adding path labels or changing
geometrical attributes of diagram elements. Withdlifficulty all these actions can be accomplished
satisfying the constraints C4, C5, and C6, while tither constraints may be violated. To satisfycait
constraints C1...C6 layoutormalizationis needed. Besides, the initial mental map muspieserved.

To satisfy the constraints C4, C5, and C6, new rsoded path labels have to be represented by zero-
size rectangles (i.e. points) located in the dekipesitions (the bold dots in Fig. 3a). As an inéapent
point-shaped object we allow to define also thecatledsupport A support is the common endpoint of the
paths forming a fork (the circle in Fig. 3). Findjra proper position of point-shaped objects is pasate
task different for nodes, labels or supports. Thesiton may be pointed out by the user or calcutate
automatically by the layout algorithm.



Figure 3. Vertical layout segments (a), horizontal layoagments (b), and all layout segments (c).

Since our diagram elements are represented by lfprectangles or rectilinear polylines, the layout
geometry consists only of vertical and horizontaélsegments (possibly of zero length because aftpo
shaped objects) (Fig. 3a). Overlapping paths segsnarontacting supports are merged during
normalization. TheNormalize operation ensures the constraints C1...C6 includimgimal distances
between newly routed paths, and minimal sizes efrents while minimizing changes to the diagram. For
newly added nodes and path labBlsrmalizeassigns correct sizes to these elements. Alscecbmode
inclusions are ensured.

Preservation of the mental map for us means miration of the total distance between the new and
the old places of the diagram elements while kegpimeir ordering undisturbed. Rectilinearity of the
diagram elements allows us to process the totahde and ordering separately in horizontal andicalr
directions: first for the vertical layout segmeritsgn for the horizontal layout segments (Figs. 3a),

Note that after processing the vertical segmertis, nodes and path labels represented by points
become horizontal segments due to minimum sizeirements (Fig. 3b).

Let us consider more closely the case of vertica kegments. In this case we have to find onlyxhe
coordinate of each segment. The objective is tagasscoordinates to the vertical segments in a way that
the chosen cost function attains its minimum ane ttonstraints are taken into account. The basic
constraints are minimum horizontal distance requeats.

To keep the general view of the given layout unaipeah, the ordering of segments is predetermined in
some sense. The main idea here is a segrbsitiaclerelation, which is derived from segment visibility
segmenb is an obstacle for segmeaif
- projections of the extended segmenta@ndb on the vertical axis overlap,

- the abscissa d is smaller than the abscissalmf
- there is no segmeimtbetweera andb such that is obstacle fol, andb is obstacle for.
Here for the given segment tlextended segmergt a segment, which is obtained from the given dye

extending its both ends bg (see the constraint C3), if the given segmentfiman-zero length. Such a

relation allows for point-shaped objects to slidegly among other diagram objects, while path erialigo
remain enclosed between the corresponding nods.side

The obstacle relation defines thabstacle graphof the segments. The obstacle graph is planar;
therefore its edge number is small. Moreover, ifem¥ded segments have no common points, the edges of
the obstacle graph may be directed from left tahtigand it becomes a planar dag defining the basic
ordering of layout segments.

The obstacle graph does not represent the compteltering information. Some additional efforts have
to be made to ensure the correct ordering for nemégrted nested nodes that are represented biesing
points. To guarantee constraint C2, a special pdace is called to separate overlapping path segsient
avoid unnecessary path crossings resulting fromppmapriate segment ordering. Overlapping path
segments can be the result of the routing algoritfuttowing the fastest routing strategy: for each
rectilinear path to be routed other paths are a&éh into account.



After a complete segment ordering is determinedk #lso represented by a graph. Besides ordering
information, we include arcs into this graph frohetleft segment of every node to its right segméiuat
ensures minimum node size constraints C1. We t@&ldraph obtained theonstraint graph Like the
obstacle graph, the constraint graph is a direaggtlic graph and is also small.

We have found that layout optimality may be expezbsgia a quadratic optimization problem:

minimize F(Xq, Xz, ... Xn)

subject toxj — X > dij >0,
wherex,, X, ... X, are thex-coordinates of the segments, and the pairf) @re the arcs of the constraint
graph.

The functionF is built to minimize the changes of the layout,daim its most usual form is a sum
comprising summands of two kinds and correspondinly to diagram nodes.

To minimize the node drift, we introduce the sumrdan

(m+&

where for each nodr, X, are the abscissas of its left and right segmeantgl . is a constant abscissa of its
old center.

To minimize the node siz&; comprises also summands of the form

W (X — X))

The weighting factow should be chosen in an appropriate way. The valdeeems good enough.

After the minimization problem has been solved, th@gram is recalculated for the new places of the
segments (Fig. 3b).

Analogously, the layout is processed in the veftitieection (Figs. 3b, 3c).

Because of real-time conditions, we need a fasbrtigm for our optimization problem. It is shown in
the next sections that in practice it may be soliredn® time where 1.5 9 < 2.

- XC)21

Optimization technique

As described above, we must deal with functiontie form

F) =Y Li(x), (1)

whereL(x) denotes some linear function depending omatimensional poink = (X, Xz, ... X,)'. We need
to minimizeF subject to the inequality

Ax>d, (2)
where each row of them x n matrix A comprises only two non-zero elements —1 and +dolumnsi; and
jr respectively, and all the pairs,(j;) form an acyclic graph.

We have chosen the gradient projection method [M&®1he theoretical background for solving this
quadratic programming problem. In its general fatme method involves matrix computations in the case
of linear constraints. We completely avoid matriopessing by exploiting the simplicity of our corants.

The solution is found in two stages. At first a f#fale starting poink, satisfying the inequalitpx, > d
is searched. If such a point exists, then our peabbbviously has a solution.

Lemma 1. The set of feasible points is non-empty

Proof. Let us number the vertices of the constraint ¢rampologically, and leti,.be the maximum
component of then-tupled. Settingx; = i-dnaxWe obtainx satisfying the condition (2). O

In fact, the topological sorting procedure may tightly modified in order to transform an arbitrary
pointx into a feasible one much better than obtainedheyproof of Lemma 1.

After the starting point is found, iterations arerformed in order to find the solution. At eachrag¢ion
the current poink is changed so th& decreases.



We have to distinguish two major cases: the ineifpé?) is strong or not.

CaseAx>d.

In this case the point is strongly inside the feasible area and we maift shin the direction of the
steepest descegt= (-OF(X))".

We find two scalar values:
T; minimizing the functiorf(tr) = F(x + g't), 1> 0, and
T,=max (t >0 |A(X+ g1) > d).

Finding botht; and 1, is easy because since (f(}) is a quadratic function, and (2) is reducednto
linear inequalities of one variable.

Thenx has to be changed to+ g-min(ty, 15).

CaseAx>d, and equality holds for at least one dimension.

In this case the point is on the border of the feasible area and we nshigt x along the border in the
direction which is the projectiop of g onto the border.

To calculatep let us introduce a new, X n matrix A as the submatrix oA consisting of those rows of
A for which strong equalities in (2) take place. Laddtbe the corresponding subcolumnafWe call the
corresponding subgraph of the constraint grapleittesze constraint grapland denote it bys,.

Lemma 2. All vertices of every connected subgraph of l@ve mutually equal corresponding
projection components

Proof. From the choice of, we haveAixx = dy, and for an arbitrary shif along the border defined by
Aowe haveAq (X +Y) = do, too. Hence

Ajy =0, 3)

and consequentkp = 0.

The last equality means that for an arbitrary rofvAg we havep; = p;, i.e. all arcs ofG, have equal
projection components for both ends. The requiragiesnent follows immediately. O

Lemma 3. Let S be the index set of vertices of an arbitrargximum connected subgraph of &nd,
as stated above, all its vertices have the samggatmn componentpThen

-1
Ps= |S|ng .

kOS
Proof. Asp is the projection ofj, g — p is perpendicular to all directionsalong the border. Because of
(3),g—p can be expressed as some linear combination o$ @i, i.e. taking an appropriat@,-tupleu

g-p=Adu. (4)

AL
Thek-th row in the last equality igk— px = Zaikui , Whereay denotes an element .
i=1

My My
We have Y (g, — P) =D U =D U, > a,, and, sinceS includes either none or both ends of

kOS kOS i=1 i=1 kOs
Go's arcs,Za,-k =0 because each row 8§ comprises exactly two non-zero elements —1 and +1.
kOS
HenceZ(gk - p) =0, andzgk :Zpk: 1S-ps o
kOs kOS kOs

Lemmas 2 and 3 allow us to calculgddérom g in a very simple way. At first, we divide all conoments
of g into subsets corresponding to the maximum connkstébgraphs o6, Secondly, we calculate the
average of the corresponding componentg.of

After p is calculated, we have to distinguish another tases.



Casep # 0.

In this case like in the cas®x > d we find two scalar values:
T: minimizing the functiorf(t) = F(x + p't), 1> 0, and
T,=max (1> 0 |A (X + p1) > d).

And then change to x + p-min(ty, 12).

Casep = 0.

This is the case when we have to change the matyiar stop the iterations. Because of the convexity
of our optimization problem, the Kuhn-Tucker conaiits allow us to distinguish between two cases.

From (4), we have

g=Adu. (5)
The Kuhn-Tucker conditions mean that if there esdssatisfying (5) and
u<0,i=1,2,..m, (6)

then the optimum is reached.
Lemma 4. Let all vertices of Gbe partitioned into two disjoint subsets V aNdin such a way that all
arcs joining V andV go from V toV thus forming a directed cut separating V and Let S be the index

set of vertices o¥/ . If the cut ispositive i.e. Z g, >0, then every u satisfyin) violates(6). Besides, g
kS

is directed inside the feasible area relativelyitoborder defined by those rows of, Avhich correspond to

the arcs of the cut, and the projection of g ortte feasible area’s border defined by the other rafgy is

not equal ta0.

Proof. Let C be the index set of rows &, corresponding to the arcs of the cut.

Since each row oA, comprises exactly two non zero elements —1 andhat indicate the endpoints of
the arc corresponding to the row, and since ontgaf the cut have exactly one (marked with +1) poitht
belonging toV , we have LitiHe

elonging toV , we have ) a, = .
ang <5 0,otherwise

kOs

Hence, ifu satisfies (5),) g, :Ziaﬂ(ui :iuiZaik =Y u,, and Y_u, > 0 because of the given

kOS kOS i=1 i=1 kOS i0oc ioc
inequality. Obviously, for someu; > 0, i.e. (6) does not hold.

To prove thag is directed inside the feasible area relativelytsoborder defined by those rows A,
which correspond to the arcs of the cut, we shout tthere existsl satisfying (5) such that; > O for all
idcC.

Assume first thats, is connected and our cut is a minimum cut i.e. @ngper subset of its arcs does
not form a cut. In such a case there exists a spantnee inG, that includes exactly one arc from our cut.
We remove fromGy all arcs of the cut except the one of the spanrtiieg, and we remove fro, the

corresponding rows, thus obtaining the graphand the matrixA; . Besides, let for amg — [C| + 1)-tuple
u: g= A’)Tul .
In the graphG; the vertex set¥ and V are still separated by a positive directed cutnkte, by the

same argument as for the uniqgue component af corresponding to the cut is positive.

It is easy to see that the requirads obtainable fromu’ by setting all missing components to 0.

In the case whefs, is disconnected or our cut is not a minimum ormge parts of the cut, which are
minimum cuts, must be examined separately in eaakimum connected subgraph @§.

Finally, let us show that the projection gfonto the feasible area’s border defined by thases of A,
which do not correspond to the arcs of our cutyag equal to 0.

Denote byG; the graph obtained fror, after removing all arcs of the cut. Some Gfs maximum

connected subgraphs constitute the pﬁrtLetS ( =1, ...) be the vertex index sets of these subgsaph



S=5 U.... As§ are mutually disjoint anaz g, >0, some of the sumi g, must be different from 0.

koS kOS;
Because of Lemma 3, this means the required prgpert O

Lemma 5. If for every directed cut separating V arM in Gy ng < 0 holds, then there exists u
kOS
satisfying(5) and (6).

Proof. Let us extends, by adding two new verticesandt, and by adding additional arcs frosto all
vertices withgx > 0, and from all vertices witly, < O tot. We are about to pass a flow through the extended
graph. The capacity of the original arcs is setdoand the capacity of all arcs adjacenstor t is the value
lgk| corresponding to the second end of the arc.

There exists a flow with a valug® = ng . To prove this, we have to verify the well-knowroife-

9k20
Fulkerson condition: the total capacity for all ingoing arcs of every sef U{t} must be at leasty’,
whereV is subset of the vertices &.

If at least one arc fronG, goes intoV, thenci, = © > g".

In the opposite cas has a directed cut separatnv{gandv .
LetSand S be the index sets of vertices frovhandV respectively, and

g;: ng,g§= ng-

KOS, g, 20 KOS, g<0
Itis clear thaig” = g¢ + g, and by the condition of the Lemmgg + g; <O.
Since only arcs going int¥ U{t} are adjacenttsort,cn= gs — 95 =9'— 05 — 95 >0".
Thus a flow with a valug” exists and gives the values> 0,i =1, 2, ...mg to arcs ofG,.

Let In(k) and Out(k) denote the index sets of ingoing and outgoingsastkth vertex ofG,. It holds
In(k) = {i | ax > 0}, Out(k) = {i | ax < 0}.

Itis easy to see that for our flow we hage= > ¢ - D> 4= D ¢ — > ¢ = iaik {-¢,).

idIn(k) idout(k) iiay <0 iiay >0 i=1

Henceg = Ao’ (—p), wherep = (#,,8,, ... . )" O

Lemmas 4 and 5 show how to distinguish in the cpse 0 between changing the active constraint
graph or stopping the iterations. If there existpasitive directed cut, iterations must be contidue
beforehand removing the rows corresponding to ties af the cut fromA,.

To test the existence of such a cut is the most glemx part of our optimization method. Fortunately,
the question is well-studied [H97] and can be sdhay the maximum flow technique. The proof of Lemma
5 is just based on the corresponding construction.

The gradient projection method works well at ourpégation. Nevertheless, it may be made
significantly faster due to the very clear geomethackground of the problem. Indeed, according to
Lemmas 2 and 3, when we shift the current pointo its new position, each maximum connected
component of the active constraint graph moves agié body. We have observed that there is no ned
move all components simultaneously by the veajanin(ty, t,). Any direction whereF decreases is
admissible. We can take the components one by awkshift them in a direction, which decreases the
function. If two components touch each other we geethem. The outline of the algorithm follows:

(1) shiftand merge components of the active caistrgraph while possible;

(2) Calculate a positive cut;

(3) If such a cut exists, remove its arcs from #eative constraint graph and continue with (1).



Furthermore, we can get rid of costly flow computas by maintaining a spanning tree in each
component. At each merge we update the tree byradadine active arc between the two components. The
necessary cut of the tree can be calculated iraliiene.

After these modifications the algorithm convergamiicantly faster than the direct implementatioh
the gradient projection method based on Lemmas 1-5.

In the next section we give examples of the praatimehavior of our approach.

Application examples

The main and most important application examplediagram normalization. To measure the time
complexity of our optimization method, we generaggies of realistic-looking diagram examples rantlom
in the following way. We takeN random upright rectangles representing diagramesodPlacing them
randomly, they may intersect (Fig 4a). To obtaina@rect diagram, intersections must be eliminafius
task is solved by our technique giving the nodeolaty(Fig 4b). Next we addN random independently
routed paths. Independent routing may generate E@Ebments with violated minimum distance
requirements, which are made correctMyrmalize(Fig 4c). As the last step we add path labels, ifige
the required space using once mdlermalize(Fig 4d). In all steps the mental map coming frdme initial
rectangle positions is preserved.
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Figure 4. Initial rectangles (a), rectangles after intetsmtelimination (b),
normalized random paths (c), and random size piblk (d).

Basically the preservation of the mental map is reggsed as minimization of node drift subject to
obstacle graph requirements. We can use differeotieis as well, for example preserving orthogonal
e —— ordering_as di_scussed in [MELS95, HIMF98]._ In oechnique we

H D - E accomplish this by adding arcs between adjacentargges (with

= respect to the ordering) to our constraint graplg. 5 shows the

. D = rectangle intersection elimination while preservitng orthogonal

ordering applied to the same starting position @ay.

UDD Tables 1 and 2 show the performance of the C++ enpntation
DE‘: of our optimization method running on a PENTIUM 16z
D D computer. The average data from ten examples isrtaKkhe first

table reflects diagram processing illustrated ig.F. The second

one shows elimination of rectangle intersectionsayger datasets in

Figure 5. Rectangles of Fig4a  two cases: while preserving the orthogonal orderiagd with
after intersection elimination whi  obstacle graph approach. The segment contiteration count )

preserving the orthogonal ordering and time in seconddY is given inx andy directions separately.



In all examples the generated rectangles are platadsquare at a density where the total aredef t
rectangles approximately equals the area of theasgjuWhen normalizing in horizontal direction, the
rectangle height is taken two times smaller. Toamt better solution of the two-dimensional prahlé is
possible to do normalization several times gradualcreasing rectangle height when normalizing in
horizontal direction. However, our experience shdiead the quality improvements are not significant.

Table 1. Diagram processing.
Intersection elimination Path routing Labeling
n [T lhL[Ty e [l Tl ny 1] T e LTl ny L] T
1000, 9| 0.1] 18| 0.3|| 5610/ 37| 3.1| 5545/37| 2.9]| 6610/ 10| 1.3] 6545/ 21| 2.2
2000] 11| 0.3]| 29| 0.9|| 13140/ 60| 12.7) 13001 46| 9.2|| 15140/ 9| 2.7/ 15001 26| 6.9
3000 16| 0.6| 38| 1.6|| 21616| 66| 21.7| 21427/ 58| 18.1|| 24616| 10| 4.4| 24427 34| 14.2
4000] 16| 0.9] 48| 2.7|| 30899 82| 38.3] 30640 75| 33.0|| 34899 11| 7.3]| 34640 36| 22.6

Table 2. Rectangle intersection elimination. The performance obtained in our experiments can be
Obstacle orderingOrthogonal ordering expressed asn®, where 1.5 <p < 2 depending on the
n [Tl [Ty [ | T[Ily [T, | problemtype. o
1000/ 81011 171 0.2 17] 0.2l 2al 03] A_n interesting o_bs_ervgtlon is that after a few
2000121031 26/ 0.7/ 271 0.7 37| 1.0 ggratlons of the ?_p_ttl)rrlza;ur?n, fV|sual changestoﬁetth
iagram are negligible; therefore we can stop the
3888;2 ég gg 1%2 ?‘2 gg 122 123 iterations. Indeed, our previous version [KR96] is
: : : : essentially finding a feasible point without optiation,
16000388.6|145[35.2]123|31.6/193|51.5 followed by post-processing to shrink unnecessarily
expanded nodes. Although cutting off iterationsegiv
considerable time cut, we do not use this sincediagrams usually contain not more than a few tteouws
segments, where the method is fast enough. In medéven in large diagrams small interactive change
done by the user require only a few iterations sitfwe starting point is close to the optimum.

Conclusions

The optimum layout adjustment technique has beeveldped to handle graph-like diagrams of
complex structure at the lowest level. Onormalizationconcept has turned out to be very powerful,
allowing creation of a layout of a diagram in seakstages. An independent path routing followed by
normalization leads to a quite flexible system. \6&n use the same routing algorithms as those used i
interactive editing. Further, the node layout staiges not have to consider the paths in great exidle
can process the most complex path structures imujuidrks afterwards. The known algorithms do neadl
with forks at all or demand some simplifying condits. For example, [S97] requires forks to form an
acyclic graph. We do not have such requirementshbse of handling forks asipports

Many high-level operations are essentially base@wonoptimization technique, like layoabmpaction
andcorrection Correction is aNormalizelike procedure that can get the constraints C1..s@tsfied. We
only have to replace all nodes by zero-sized regiesiand calculate a correct constraint graph. Cactipn
is another analogue dflormalize It reduces distance between nodes by minimizioghne other cost
function. The degree of compaction can be easiytaaled, even in the opposite direction thus exgiag
the layout.

There can be parts that require hierarchical strtiaty (forks, directed paths) and parts, which den
laid out unrestricted in our diagrams. When the eddyout is generated automatically, diagrams are
reduced to graphs and we combine two intermediadellalgorithms one for laying out undirected graph
and one for directed graphs.
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An undirected graph we lay out on the grid, repelstenoving each vertex to a free gridpoint closest
the barycenter of its neighbors. To ensure fredmuints near the desired place, we expand the kajime
after time, by compacting it and inserting emptywoand columns.

Since we use grid, we have to note that our optatian technique solves the corresponding integer
programming problem with practically good approxima by simply rounding off the real-valued
solution. More important is that we are not redeit to a quadratic function, a linear one is also
allowed. Besides, in the integer linear case we thet exact result because of simplicity of our
constraints.

A directed graph, possibly containing vertices eganting supports and edges corresponding to fork
paths, we lay out conventionally in a layered stuwe [GKNV93, DETT99]. If the graph contains cycles
then the number of edges going upward is minimized temporarily reversed, thus getting an acyclic
graph. First vertices are placed into layers arehtbrdered inside these layers to minimize edgessings.

In both cases our optimization technique is invalhme the following way.

In accordance with [GKNV93, DETT99], the optimumagkment of vertices into layers minimizes the
total vertical extent of all edges, i.e. the sundiferences between layer numbers of edge verti€aking
our temporary acyclic graph as the constraint grap requiring the vertical extent of each edgéeoat
least 1, we immediately obtain an integer lineaogmamming problem, which is solved as mentioned
above.

Further, vertices are ordered inside layers acowydl their neighbor barycenters. To keep the ¢esi
separated, we just calllormalize After the vertex order is determined, we assipe final horizontal
coordinates by minimizing the total edge length @mgs as suggested in [DETT99]. Of course we sum up
only squares of the horizontal extents of the edgasl minimize this sum subject to the constraguming
from an already found extremely simple vertex omdgr Despite the caution given in [DETT99], our
optimization techniqgue does not require considexatmputational resources and solves the problem
efficiently.

Another and particularly important stage of theday creation is path label assignment. Maintaining
textual labels on the paths is a hard problem madagnly by few systems [KR96, DKMT98, G]. Our
approach essentially facilitates the situation lytpioning it into two independent and technicadiynpler
subproblems: looking for free places, and deformting layout if there is not enough place. Havingpgo
initial label positions,Normalize provides their correct size preserving the initmental map, thus
obtaining quite pretty path labeling [G].
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