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Abstract. We propose an optimization-based technique for layout operations ensuring 
flexible and convenient interactive editing of a wide class of graph-like diagrams. Diagrams 
may contain nested nodes, textual labels on connection paths, and branched structures of 
paths. Layout operations rely on mental map preserving optimum layout adjustment via 
solving quadratic programming problems subject to ordering constraints. 
 

Introduction 

Graph-like diagrams are graph based pictorial models that indicate the interrelationships of elements of 
various structures. Graph-like diagrams are widely used to describe the information and its structure in such 
areas as CASE or CAD, for example describing the connections between enterprises, development of 
specifications, or for program code representation [MM88, BRJ99]. 

An important aspect for users is diagram visualization, a process called diagram layout. Layout 
technique of graph-like diagrams has been developed hand in hand with pure graph layout [BNT86, 
RDMMST87, SM81, TDBT88], gradually refining requirements for diagram layouts [DM90, PSTS91]. 
However, as emphasized in [LE95], pure graph layout on the whole has received more attention [DETT94, 
DETT99] than diagram layout. In fact, additional requirements for layout of diagrams cause specific 
problems that could be far from principal questions of pure graph layout. Striking examples are tree-like 
structures with edge drawing conventions such as combination of several edges into branched fork-like 
paths, or representation of an edge by geometrical inclusion of node symbols [LE95] (see also [MM88, 
SM91]). Of course, when it is too tedious to maintain specific requirements, we could ignore them. For 
example, in [S97], a well-known graph drawing algorithm is used for UML class diagrams [BRJ99], 
however the inherent UML fork tradition, which has no generally adopted realization in pure graph layout, 
is simply rejected. 

Our graph-like diagrams are combinatorial structures consisting of elements of three principal kinds: 
nodes, relations among nodes, and labels. A layout of a diagram is an arrangement of geometrical objects 
on the plane corresponding to the diagram elements (Fig 1). 

Boarded

Landed
(destination airport)

Checking-in

Booked

In flight

Registered on waiting list

Accepted

Seats available
/ issue
 boarding pass

Flight taking off

Flight landing

[overbooking OR booked
 on stand-by]

Deboarding
 request

[checked-in to
 connecting flight]

Passenger arrived
 at a check-in desk

arrived at boarding desk 
[boarding is on]

[check-in for
 flight not
 open]

[check-in closed AND
 no seats available]

[seats OK]

  

Registration

Passenger
 Registered on

 Waiting List

Assignment of Boarding
 Number and Preparation

 of Boarding Passes

Passenger

Check-in
 Agent

Registration 
for Flight

Seat Assignment

Bag Tag
Bag tag number
Boarding number

Boarding Pass
Boarding number
Seat number

Passenger
 Registered for

 Flight

Registration on
 Waiting List

Baggage Checking and
 Printing of Bag Tags

performs
of

results in

sets passenger state to

sets
 passenger
 state to

has

results in

    
   a    b     c 

Figure 1. Simple diagram (a), diagram with forks (b), diagram with nested nodes (c). 
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Nodes are basically represented by two-dimensional symbols, most commonly by upright rectangular 
boxes or circles. In this paper we will use only rectangular boxes. 

Relations are represented by  
(1) paths, i.e. single rectilinear polylines connecting symbols that represent the associated nodes (Fig. 1a), 
(2) forks, i.e. branched structures of rectilinear polylines (Fig. 1b), 
(3) inclusions, i.e. placement of one node symbol inside another one (Fig. 1c). 

Labels are text fields, represented by upright rectangles and are 
categorized into node labels and path labels. Node labels are placed 
inside the nodes on the specially assigned margins. Path labels must be 
placed near their lines in an understandable way which label belongs 
to which line.  

Since we allow a wide range of geometrical representations of 
relations, our layouts cover the full spectrum from drawings of simple 
graphs (Fig. 1a) up to UML diagrams [BRJ99, SBKP98] (Fig. 1b), 
including essentially generalized K.Sugiyama's and K.Misue's 
compound graphs [SM91] (Fig. 1c). Figure 2 shows that all together. 

The task for diagram layout is to represent the information of 
diagrams in an easily perceptible way [DM90, PSTS91]. Accordingly, 
a correct layout must satisfy natural geometric constraints: 
(C1) node rectangles are not smaller than a minimum size, 
(C2) path lines have no common segments, 
(C3) the minimum distance � > 0 is guaranteed between nonintersecting segments of geometrical objects, 
(C4) path labels neither overlap each other, nor node contours, nor path lines, 
(C5) node contours do not cross each other, 
(C6) path lines do not intersect node contours unless forced by inclusions. 

We allow variable size node rectangles in order to be able to draw graphs of degree higher than four 
[DETT99, MHT93]. Also editing node labels or putting one node inside another one could cause to change 
node sizes. Similarly, inserting new nodes or path labels between the paths contacting the same node may 
require changing its size. 

A layout of a diagram can be created interactively by the user, or automatically by a program. The 
interactive drawing approach [DETT99] has led to the idea of a mental map [BT98, DETT99, MELS95]. 
The mental map of a diagram should be preserved during the layout process in order to ensure the user’s 
control and understanding. Thereby all changes to the diagram have always to be minimized, so 
optimization approach rises in a natural way along with the notion of mental map. 

The concept of a mental map together with optimization questions is profoundly studied in literature. In 
[MELS95], the problem of preservation of the mental map is discussed. The authors propose several 
models to make the concept of the mental map more precise: orthogonal ordering, proximity relations, and 
topology. Additionally an algorithm for rearranging a diagram to avoid node overlap preserving orthogonal 
ordering is presented. [HIMF98] develops this approach further to avoid intersections among rectangles. In 
[BT98] a formalization of the notion of mental map is performed, and differences between layouts in 
various aspects: distance, proximity, orthogonal ordering, shape, and topology are expressed 
mathematically. The authors of [HM97] use mathematical programming including quadratic one to 
preserve the mental map in an interactive layout when repeated modifying occurs. Constraints express 
semantic information, mainly about various aesthetics that have to be considered automatically. 

Our approach to the drawing of graph-like diagrams grows from the tool GRADE [KR96], and is now 
being developed further for Editor Factory needs [SBKP98]. Editor Factory is an annotation language 
interpreter, which can be used to design various diagram editors. Editor Factory is based on Graphical 
Diagramming Engine [G], which provides the graphical functionality of the editor and its user interface.  
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Figure 2. Complex diagram. 
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Editors must be able to manage diagrams interactively, and to generate the layout automatically. An 
editor based on our Graphical Diagramming Engine provides fully automatic layout and direct manual 
painting of graphical primitives as extreme cases as well as intermediate editing levels all integrated in a 
single system. Fast procedures for switching among the various layout modes have also been implemented, 
thus ensuring flexible and convenient editing by filling the gap between the extreme levels of editing. We 
have to deal with large diagrams consisting of hundreds or even thousands nodes and relations in real time. 
Therefore the diagram operations must be designed for maximum speed. 

To create a layout of a diagram we go through several relatively independent stages. The main of them 
are node layout, path routing, layout compaction, and label assignment. At each stage we provide a correct 
intermediate layout trying to preserve a common mental map. To guarantee maintaining the mental map 
during layout modification we solve two quadratic optimization problems, one in each orthogonal direction.  

This approach conforms to several important ideas proposed in the literature. First, layout adjustment 
requires the objects to move or to stretch as in [MHT93]. Furthermore, an optimum adjustment involves 
mathematical programming including integer, linear, and quadratic ones that are widely used in graph 
drawing [HM97, DETT99]. Recent works [BDPP99, KM99] also elaborate related concepts and touch ours 
in some basic points. 

The deviation of the layout from the intended mental map can be measured by a function to be 
minimized. Our function comes from the idea of distance metrics [BT98] and position constraints 
[DETT99]. Minimization is done subject to ordering constraints. In [DETT99] it is shown how ordering 
constraints can be used in layered drawings for horizontal coordinate assignment. However when 
discussing the use of a quadratic programming approach, the authors warn that the solution requires 
considerable computational resources even if the ordering constraints form an acyclic graph. Such 
constraints also appear in [GKNV93] for finding optimum layering by integer programming. Below we 
show that our technique, which is based on the projective gradient method [M89], allows us to solve these 
problems spending quite moderate computational resources. 

As another example, we have a possibility to eliminate the intersections among upright rectangles while 
preserving the orthogonal ordering. For this purpose [MELS95, HIMF98] offer an O(n2)-time heuristic 
algorithm that minimizes the layout area. Our approach gives similar results but in a conceptually easier 
way. Further, our operations include also other rectangle processing algorithms for rectangle compaction 
and packing. 

A quadratic programming algorithm is the principal part of a procedure called Normalize, which 
ensures a correct intermediate layout while not destroying the common mental map at each layout creation 
stage. Normalize is our backbone operation and is discussed below in more detail. 

Layout structure and normalization 

When modifying the diagram, the user is inserting new nodes or paths, adding path labels or changing 
geometrical attributes of diagram elements. Without difficulty all these actions can be accomplished 
satisfying the constraints C4, C5, and C6, while the other constraints may be violated. To satisfy all our 
constraints C1…C6 layout normalization is needed. Besides, the initial mental map must be preserved. 

To satisfy the constraints C4, C5, and C6, new nodes and path labels have to be represented by zero-
size rectangles (i.e. points) located in the desired positions (the bold dots in Fig. 3a). As an independent 
point-shaped object we allow to define also the so-called support. A support is the common endpoint of the 
paths forming a fork (the circle in Fig. 3). Finding a proper position of point-shaped objects is a separate 
task different for nodes, labels or supports. The position may be pointed out by the user or calculated 
automatically by the layout algorithm. 
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Figure 3. Vertical layout segments (a), horizontal layout segments (b), and all layout segments (c). 

Since our diagram elements are represented by upright rectangles or rectilinear polylines, the layout 
geometry consists only of vertical and horizontal line segments (possibly of zero length because of point-
shaped objects) (Fig. 3a). Overlapping paths segments contacting supports are merged during 
normalization. The Normalize operation ensures the constraints C1…C6 including minimal distances 
between newly routed paths, and minimal sizes of elements while minimizing changes to the diagram. For 
newly added nodes and path labels Normalize assigns correct sizes to these elements. Also correct node 
inclusions are ensured. 

Preservation of the mental map for us means minimization of the total distance between the new and 
the old places of the diagram elements while keeping their ordering undisturbed. Rectilinearity of the 
diagram elements allows us to process the total distance and ordering separately in horizontal and vertical 
directions: first for the vertical layout segments, then for the horizontal layout segments (Figs. 3a, 3b). 

Note that after processing the vertical segments, the nodes and path labels represented by points 
become horizontal segments due to minimum size requirements (Fig. 3b). 

Let us consider more closely the case of vertical line segments. In this case we have to find only the x-
coordinate of each segment. The objective is to assign x-coordinates to the vertical segments in a way that 
the chosen cost function attains its minimum and the constraints are taken into account. The basic 
constraints are minimum horizontal distance requirements. 

To keep the general view of the given layout unchanged, the ordering of segments is predetermined in 
some sense. The main idea here is a segment obstacle relation, which is derived from segment visibility: 
segment b is an obstacle for segment a if 
- projections of the extended segments of a and b on the vertical axis overlap, 
- the abscissa of a is smaller than the abscissa of b, 
- there is no segment c between a and b such that c is obstacle for a, and b is obstacle for c. 
Here for the given segment the extended segment is a segment, which is obtained from the given one by 

extending its both ends by 
2

δ
 (see the constraint C3), if the given segment is of non-zero length. Such a 

relation allows for point-shaped objects to slide freely among other diagram objects, while path endpoints 
remain enclosed between the corresponding node sides. 

The obstacle relation defines the obstacle graph of the segments. The obstacle graph is planar; 
therefore its edge number is small. Moreover, if extended segments have no common points, the edges of 
the obstacle graph may be directed from left to right, and it becomes a planar dag defining the basic 
ordering of layout segments. 

The obstacle graph does not represent the complete ordering information. Some additional efforts have 
to be made to ensure the correct ordering for newly inserted nested nodes that are represented by single 
points. To guarantee constraint C2, a special procedure is called to separate overlapping path segments to 
avoid unnecessary path crossings resulting from inappropriate segment ordering. Overlapping path 
segments can be the result of the routing algorithm following the fastest routing strategy: for each 
rectilinear path to be routed other paths are not taken into account. 
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After a complete segment ordering is determined, it is also represented by a graph. Besides ordering 
information, we include arcs into this graph from the left segment of every node to its right segment. That 
ensures minimum node size constraints C1. We call the graph obtained the constraint graph. Like the 
obstacle graph, the constraint graph is a directed acyclic graph and is also small. 

We have found that layout optimality may be expressed via a quadratic optimization problem: 
minimize F(x1, x2, ... xn) 
subject to xj – xi 

�
 dij 
�

 0, 
where x1, x2, ... xn are the x-coordinates of the segments, and the pairs (i, j) are the arcs of the constraint 
graph. 

The function F is built to minimize the changes of the layout, and in its most usual form is a sum 
comprising summands of two kinds and corresponding only to diagram nodes. 

To minimize the node drift, we introduce the summands 

(
2

rl xx +
 – xc)

2, 

where for each node xl, xr are the abscissas of its left and right segments, and xc is a constant abscissa of its 
old center. 

To minimize the node size, F comprises also summands of the form 
w�(xr – xl)

2. 
The weighting factor w should be chosen in an appropriate way. The value 10 seems good enough. 

After the minimization problem has been solved, the diagram is recalculated for the new places of the 
segments (Fig. 3b). 

Analogously, the layout is processed in the vertical direction (Figs. 3b, 3c). 
Because of real-time conditions, we need a fast algorithm for our optimization problem. It is shown in 

the next sections that in practice it may be solved in ~np time where 1.5 < p < 2. 

Optimization technique 

As described above, we must deal with functions in the form 
F (x) = �

k
k xL )(2 ,        (1) 

where Lk(x) denotes some linear function depending on an n-dimensional point x = (x1, x2, ... xn)T. We need 
to minimize F subject to the inequality 

Ax 
�

 d,          (2) 
where each row r of the m × n matrix A comprises only two non-zero elements –1 and +1 in columns ir and 
jr respectively, and all the pairs (ir, jr) form an acyclic graph. 

We have chosen the gradient projection method [M89] as the theoretical background for solving this 
quadratic programming problem. In its general form the method involves matrix computations in the case 
of linear constraints. We completely avoid matrix processing by exploiting the simplicity of our constraints. 

The solution is found in two stages. At first a feasible starting point x0 satisfying the inequality Ax0 
�

 d 
is searched. If such a point exists, then our problem obviously has a solution. 

Lemma 1. The set of feasible points is non-empty. 
Proof. Let us number the vertices of the constraint graph topologically, and let dmax be the maximum 

component of the m-tuple d. Setting xi = i �dmax we obtain x satisfying the condition (2).  � 
In fact, the topological sorting procedure may be slightly modified in order to transform an arbitrary 

point x into a feasible one much better than obtained by the proof of Lemma 1. 
After the starting point is found, iterations are performed in order to find the solution. At each iteration 

the current point x is changed so that F decreases. 



 6

We have to distinguish two major cases: the inequality (2) is strong or not. 
Case Ax > d. 
In this case the point x is strongly inside the feasible area and we may shift x in the direction of the 

steepest descent g = (–∇F(x))T. 
We find two scalar values: �

1 minimizing the function f(�) = F(x + g��), � 	 0, and �
2 = max ( � 	 0 | A�(x + g��) 	 d). 

Finding both �1 and �2 is easy because since (1) f(�) is a quadratic function, and (2) is reduced to m 
linear inequalities of one variable. 

Then x has to be changed to x + g�min(�1, �2). 
Case Ax 
 d, and equality holds for at least one dimension. 
In this case the point x is on the border of the feasible area and we must shift x along the border in the 

direction which is the projection p of g onto the border. 
To calculate p let us introduce a new m0 × n matrix A0 as the submatrix of A consisting of those rows of 

A for which strong equalities in (2) take place. Let d0 be the corresponding subcolumn of d. We call the 
corresponding subgraph of the constraint graph the active constraint graph and denote it by G0. 

Lemma 2. All vertices of every connected subgraph of G0 have mutually equal corresponding 
projection components. 

Proof. From the choice of A0 we have A0x = d0, and for an arbitrary shift y along the border defined by 
A0 we have A0�(x + y) = d0, too. Hence 

A0y = 0,         (3) 
and consequently A0p = 0. 

The last equality means that for an arbitrary row of A0 we have pi = pj, i.e. all arcs of G0 have equal 
projection components for both ends. The required statement follows immediately.   � 

Lemma 3. Let S be the index set of vertices of an arbitrary maximum connected subgraph of G0, and, 
as stated above, all its vertices have the same projection component pS. Then 

pS =  �
∈Sk

kg
S||

1
. 

Proof. As p is the projection of g, g – p is perpendicular to all directions y along the border. Because of 
(3), g – p can be expressed as some linear combination of rows of A0, i.e. taking an appropriate m0-tuple u 

g – p = A0
Tu.         (4) 

The k-th row in the last equality is gk – pk = 

=

0

1

,
m

i
iikua  where aik denotes an element of A0. 

We have � � ���
∈ = ∈=∈

==−
Sk

m

i Sk
iki

m

i
iik

Sk
kk auuapg ,)(

00

11

 and, since S includes either none or both ends of 

G0’s arcs, 0=
�
∈Sk

ika  because each row of A0 comprises exactly two non-zero elements –1 and +1. 

Hence ,0)( =−
�

∈Sk
kk pg  and ��

∈∈

=
Sk

k
Sk

k pg = |S|�pS.      � 

Lemmas 2 and 3 allow us to calculate p from g in a very simple way. At first, we divide all components 
of g into subsets corresponding to the maximum connected subgraphs of G0. Secondly, we calculate the 
average of the corresponding components of g. 

After p is calculated, we have to distinguish another two cases. 
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Case p 
�

 0. 
In this case like in the case Ax > d we find two scalar values: �

1 minimizing the function f(�) = F(x + p��), � � 0, and �
2 = max ( � � 0 | A�(x + p��) � d). 

And then change x to x + p�min(�1, �2). 
Case p = 0. 
This is the case when we have to change the matrix A0 or stop the iterations. Because of the convexity 

of our optimization problem, the Kuhn-Tucker conditions allow us to distinguish between two cases. 
From (4), we have 

g = A0
Tu.         (5) 

The Kuhn-Tucker conditions mean that if there exists u satisfying (5) and 
ui � 0, i = 1, 2, … m0,        (6) 

then the optimum is reached. 

Lemma 4. Let all vertices of G0 be partitioned into two disjoint subsets V and V  in such a way that all 

arcs joining V and V  go from V to V  thus forming a directed cut separating V and V . Let S  be the index 

set of vertices of V . If the cut is positive, i.e. �
∈Sk

kg  > 0, then every u satisfying (5) violates (6). Besides, g 

is directed inside the feasible area relatively to its border defined by those rows of A0, which correspond to 
the arcs of the cut, and the projection of g onto the feasible area’s border defined by the other rows of A0 is 
not equal to 0. 

Proof. Let C be the index set of rows of A0 corresponding to the arcs of the cut. 
Since each row of A0 comprises exactly two non zero elements –1 and +1 that indicate the endpoints of 

the arc corresponding to the row, and since only arcs of the cut have exactly one (marked with +1) endpoint 

belonging to V , we have .
otherwise,0

 if  ,1��� ∈
=

�
∈

Ci
a

Sk
ik  

Hence, if u satisfies (5), � � ����
∈ = ∈∈=∈

===
Sk

m

i Ci
i

Sk
iki

m

i
iik

Sk
k uauuag

00

11

, and �
∈Ci

iu > 0 because of the given 

inequality. Obviously, for some i ui > 0, i.e. (6) does not hold. 
To prove that g is directed inside the feasible area relatively to its border defined by those rows of A0, 

which correspond to the arcs of the cut, we show that there exists u satisfying (5) such that ui 
�

 0 for all 
i∈C. 

Assume first that G0 is connected and our cut is a minimum cut i.e. any proper subset of its arcs does 
not form a cut. In such a case there exists a spanning tree in G0 that includes exactly one arc from our cut. 
We remove from G0 all arcs of the cut except the one of the spanning tree, and we remove from A0 the 
corresponding rows, thus obtaining the graph 0G′  and the matrix 0A′ . Besides, let for an (m0 – |C| + 1)-tuple 

u′   g = 0A′ T u′ . 

In the graph 0G′  the vertex sets V and V  are still separated by a positive directed cut. Hence, by the 

same argument as for u, the unique component of u′  corresponding to the cut is positive. 
It is easy to see that the required u is obtainable from u′  by setting all missing components to 0. 
In the case when G0 is disconnected or our cut is not a minimum one, those parts of the cut, which are 

minimum cuts, must be examined separately in each maximum connected subgraph of G0. 
Finally, let us show that the projection of g onto the feasible area’s border defined by those rows of A0, 

which do not correspond to the arcs of our cut, is not equal to 0. 
Denote by G1 the graph obtained from G0 after removing all arcs of the cut. Some of G1’s maximum 

connected subgraphs constitute the part V . Let Sj (j = 1, …) be the vertex index sets of these subgraphs: 
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S= S1 �… . As Sj are mutually disjoint and  
∈Sk

kg  > 0, some of the sums !
∈ jSk

kg  must be different from 0. 

Because of Lemma 3, this means the required property.      " 

Lemma 5. If for every directed cut separating V and V  in G0 #
∈Sk

kg  $ 0 holds, then there exists u 

satisfying (5) and (6). 
Proof. Let us extend G0 by adding two new vertices s and t, and by adding additional arcs from s to all 

vertices with gk 
%

 0, and from all vertices with gk < 0 to t. We are about to pass a flow through the extended 
graph. The capacity of the original arcs is set to &, and the capacity of all arcs adjacent to s or t is the value 
|gk| corresponding to the second end of the arc. 

There exists a flow with a value g+ ='
≥0kg

kg . To prove this, we have to verify the well-known Ford-

Fulkerson condition: the total capacity cin for all ingoing arcs of every set V ( { t} must be at least g+, 
where V is subset of the vertices of G0. 

If at least one arc from G0 goes into V, then cin = & > g+. 

In the opposite case G0 has a directed cut separating V and V . 

Let S and S  be the index sets of vertices from V and V  respectively, and 
+
Sg  = )

≥∈ 0 , kgSk
kg , −

S
g  = )

<∈ 0 , kgSk
kg . 

It is clear that g+ = +
Sg  + +

S
g , and by the condition of the Lemma +

S
g  + −

S
g  $ 0. 

Since only arcs going into V * { t} are adjacent to s or t, cin = +
Sg  – −

S
g  = g+ – +

S
g  – −

S
g  
%

 g+. 

Thus a flow with a value g+ exists and gives the values +i 
%

 0, i = 1, 2, … m0 to arcs of G0. 
Let In(k) and Out(k) denote the index sets of ingoing and outgoing arcs of kth vertex of G0. It holds 

In(k) = { i | aik > 0}, Out(k) = { i | aik < 0}. 

It is easy to see that for our flow we have gk = ,
∈ )(kIni

iϕ -
∈

−
)(kOuti

iϕ = .
<0 : ikai

iϕ /
>

−
0 : ikai

iϕ = 0
=

−⋅
0

1

)(
m

i
iika ϕ . 

Hence g = A0
T(–1), where 1 = ( 1ϕ , 2ϕ , ... 

0mϕ )T.       2 
Lemmas 4 and 5 show how to distinguish in the case p = 0 between changing the active constraint 

graph or stopping the iterations. If there exists a positive directed cut, iterations must be continued 
beforehand removing the rows corresponding to the arcs of the cut from A0. 

To test the existence of such a cut is the most complex part of our optimization method. Fortunately, 
the question is well-studied [H97] and can be solved by the maximum flow technique. The proof of Lemma 
5 is just based on the corresponding construction. 

The gradient projection method works well at our application. Nevertheless, it may be made 
significantly faster due to the very clear geometric background of the problem. Indeed, according to 
Lemmas 2 and 3, when we shift the current point x to its new position, each maximum connected 
component of the active constraint graph moves as a rigid body. We have observed that there is no need to 
move all components simultaneously by the vector g3min(41, 42). Any direction where F decreases is 
admissible. We can take the components one by one and shift them in a direction, which decreases the 
function. If two components touch each other we merge them. The outline of the algorithm follows: 

(1) Shift and merge components of the active constraint graph while possible; 
(2) Calculate a positive cut; 
(3) If such a cut exists, remove its arcs from the active constraint graph and continue with (1). 
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Furthermore, we can get rid of costly flow computations by maintaining a spanning tree in each 
component. At each merge we update the tree by adding one active arc between the two components. The 
necessary cut of the tree can be calculated in linear time. 

After these modifications the algorithm converges significantly faster than the direct implementation of 
the gradient projection method based on Lemmas 1–5.  

In the next section we give examples of the practical behavior of our approach.  

Application examples 

The main and most important application example is diagram normalization. To measure the time 
complexity of our optimization method, we generate series of realistic-looking diagram examples randomly 
in the following way. We take N random upright rectangles representing diagram nodes. Placing them 
randomly, they may intersect (Fig 4a). To obtain a correct diagram, intersections must be eliminated. This 
task is solved by our technique giving the node layout (Fig 4b). Next we add N random independently 
routed paths. Independent routing may generate path segments with violated minimum distance 
requirements, which are made correct by Normalize (Fig 4c). As the last step we add path labels, freeing 
the required space using once more Normalize (Fig 4d). In all steps the mental map coming from the initial 
rectangle positions is preserved. 

 
a   b   c    d 

Figure 4. Initial rectangles (a), rectangles after intersection elimination (b), 
normalized random paths (c), and random size path labels (d). 

Basically the preservation of the mental map is expressed as minimization of node drift subject to 
obstacle graph requirements. We can use different models as well, for example preserving orthogonal 

ordering as discussed in [MELS95, HIMF98]. In our technique we 
accomplish this by adding arcs between adjacent rectangles (with 
respect to the ordering) to our constraint graph. Fig. 5 shows the 
rectangle intersection elimination while preserving the orthogonal 
ordering applied to the same starting position (Fig 4a). 

Tables 1 and 2 show the performance of the C++ implementation 
of our optimization method running on a PENTIUM 120MHz 
computer. The average data from ten examples is taken. The first 
table reflects diagram processing illustrated in Fig. 4. The second 
one shows elimination of rectangle intersections on larger datasets in 
two cases: while preserving the orthogonal ordering, and with 
obstacle graph approach. The segment count (n), iteration count (I) 
and time in seconds (T) is given in x and y directions separately. 

Figure 5. Rectangles of Fig 4a 
after intersection elimination while 
preserving the orthogonal ordering 
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In all examples the generated rectangles are placed in a square at a density where the total area of the 
rectangles approximately equals the area of the square. When normalizing in horizontal direction, the 
rectangle height is taken two times smaller. To obtain a better solution of the two-dimensional problem it is 
possible to do normalization several times gradually increasing rectangle height when normalizing in 
horizontal direction. However, our experience shows that the quality improvements are not significant.  

Table 1. Diagram processing. 
Intersection elimination  Path routing  Labeling 
n Ix Tx Iy Ty  nx Ix Tx ny Iy Ty  nx Ix Tx ny Iy Ty 

                   1000 9 0.1 18 0.3  5610 37 3.1 5545 37 2.9  6610 10 1.3 6545 21 2.2 
2000 11 0.3 29 0.9  13140 60 12.7 13001 46 9.2  15140 9 2.7 15001 26 6.9 
3000 16 0.6 38 1.6  21616 66 21.7 21427 58 18.1  24616 10 4.4 24427 34 14.2 
4000 16 0.9 48 2.7  30899 82 38.3 30640 75 33.0  34899 11 7.3 34640 36 22.6 

 
The performance obtained in our experiments can be 

expressed as ~np, where 1.5 < p < 2 depending on the 
problem type. 

An interesting observation is that after a few 
iterations of the optimization, visual changes of the 
diagram are negligible; therefore we can stop the 
iterations. Indeed, our previous version [KR96] is 
essentially finding a feasible point without optimization, 
followed by post-processing to shrink unnecessarily 
expanded nodes. Although cutting off iterations gives 

considerable time cut, we do not use this since our diagrams usually contain not more than a few thousand 
segments, where the method is fast enough. In addition even in large diagrams small interactive changes 
done by the user require only a few iterations since the starting point is close to the optimum. 

Conclusions 

The optimum layout adjustment technique has been developed to handle graph-like diagrams of 
complex structure at the lowest level. Our normalization concept has turned out to be very powerful, 
allowing creation of a layout of a diagram in several stages. An independent path routing followed by 
normalization leads to a quite flexible system. We can use the same routing algorithms as those used in 
interactive editing. Further, the node layout stage does not have to consider the paths in great extent. We 
can process the most complex path structures including forks afterwards. The known algorithms do not deal 
with forks at all or demand some simplifying conditions. For example, [S97] requires forks to form an 
acyclic graph. We do not have such requirements because of handling forks as supports. 

Many high-level operations are essentially based on our optimization technique, like layout compaction 
and correction. Correction is a Normalize like procedure that can get the constraints C1…C6 satisfied. We 
only have to replace all nodes by zero-sized rectangles and calculate a correct constraint graph. Compaction 
is another analogue of Normalize. It reduces distance between nodes by minimizing some other cost 
function. The degree of compaction can be easily controlled, even in the opposite direction thus expanding 
the layout. 

There can be parts that require hierarchical structuring (forks, directed paths) and parts, which can be 
laid out unrestricted in our diagrams. When the node layout is generated automatically, diagrams are 
reduced to graphs and we combine two intermediate-level algorithms one for laying out undirected graphs 
and one for directed graphs. 

Table 2. Rectangle intersection elimination. 
 Obstacle ordering  Orthogonal ordering 
n Ix Tx Iy Ty  Ix Tx Iy Ty 

  1000 8 0.1 17 0.2  17 0.2 24 0.3 
2000 12 0.3 26 0.7  27 0.7 37 1.0 
4000 16 1.0 46 2.8  43 2.4 60 3.4 
8000 24 3.0 80 10.6  74 8.8 105 13.0 

16000 38 8.6 145 35.2  123 31.6 193 51.5 
 



 11

An undirected graph we lay out on the grid, repeatedly moving each vertex to a free gridpoint closest to 
the barycenter of its neighbors. To ensure free gridpoints near the desired place, we expand the layout time 
after time, by compacting it and inserting empty rows and columns. 

Since we use grid, we have to note that our optimization technique solves the corresponding integer 
programming problem with practically good approximation by simply rounding off the real-valued 
solution. More important is that we are not restricted to a quadratic function, a linear one is also 
allowed. Besides, in the integer linear case we get the exact result because of simplicity of our 
constraints. 

A directed graph, possibly containing vertices representing supports and edges corresponding to fork 
paths, we lay out conventionally in a layered structure [GKNV93, DETT99]. If the graph contains cycles 
then the number of edges going upward is minimized and temporarily reversed, thus getting an acyclic 
graph. First vertices are placed into layers and then ordered inside these layers to minimize edge crossings. 
In both cases our optimization technique is involved in the following way. 

In accordance with [GKNV93, DETT99], the optimum placement of vertices into layers minimizes the 
total vertical extent of all edges, i.e. the sum of differences between layer numbers of edge vertices. Taking 
our temporary acyclic graph as the constraint graph and requiring the vertical extent of each edge to be at 
least 1, we immediately obtain an integer linear programming problem, which is solved as mentioned 
above. 

Further, vertices are ordered inside layers according to their neighbor barycenters. To keep the vertices 
separated, we just call Normalize. After the vertex order is determined, we assign the final horizontal 
coordinates by minimizing the total edge length squares as suggested in [DETT99]. Of course we sum up 
only squares of the horizontal extents of the edges, and minimize this sum subject to the constraints coming 
from an already found extremely simple vertex ordering. Despite the caution given in [DETT99], our 
optimization technique does not require considerable computational resources and solves the problem 
efficiently. 

Another and particularly important stage of the layout creation is path label assignment. Maintaining 
textual labels on the paths is a hard problem managed only by few systems [KR96, DKMT98, G]. Our 
approach essentially facilitates the situation by partitioning it into two independent and technically simpler 
subproblems: looking for free places, and deforming the layout if there is not enough place. Having good 
initial label positions, Normalize provides their correct size preserving the initial mental map, thus 
obtaining quite pretty path labeling [G]. 
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